
Real-time Face Video Swapping From A Single Portrait
Luming Ma

University of Houston
lma15@uh.edu

Zhigang Deng
University of Houston

zdeng4@uh.edu

Figure 1: Our system swaps the face from a single source portrait image into an RGB live video stream. The result video retains
the facial performance of the target actor while with the identity of the source.

ABSTRACT
We present a novel high-fidelity real-time method to replace the
face in a target video clip by the face from a single source portrait
image. Specifically, we first reconstruct the illumination, albedo,
camera parameters, and wrinkle-level geometric details from both
the source image and the target video. Then, the albedo of the
source face is modified by a novel harmonization method to match
the target face. Finally, the source face is re-rendered and blended
into the target video using the lighting and camera parameters
from the target video. Our method runs fully automatically and
at real-time rate on any target face captured by cameras or from
legacy video. More importantly, unlike existing deep learning based
methods, our method does not need to pre-train any models, i.e.,
pre-collecting a large image/video dataset of the source or target
face for model training is not needed. We demonstrate that a high
level of video-realism can be achieved by our method on a variety
of human faces with different identities, ethnicities, skin colors, and
expressions.
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1 INTRODUCTION
Face swapping or replacement has been a very active research field
in recent years. One of typical face swapping scenarios can be de-
scribed as follows: given a target video/image, the appearance of the
inner face is swapped by the face from a source video/image, while
the facial expression, skin color, hair, illumination, and background
of the target video/image are preserved [Dale et al. 2011; Garrido
et al. 2014]. To date, a number of off-the-shelf applications have
been designed to achieve this goal, including Deepfakes [Deepfakes
2019] and Face Swap1.

Despite potential legal and ethical concerns have emerged in the
society in recent years, the face swapping technique itself has rich
research values and numerous useful application scenarios in film
taking, video editing, and identity protection. For instance, the face
1https://faceswap.ms/
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of a stunt actor who performs in a dangerous environment can be
replaced by a star actor’s face captured in a safe studio. It is also
applicable to revive the dead actors in legacy films by replacing
with the face of the substitute. For video amateurs, an automatic
tool that can put the faces of themselves or friends into movie or
video clips to create fun content with minimal manual involvement
is in great demanding. Furthermore, replacing the face with another
identity or virtual avatar in real-time video streaming or conference
could be practically needed to protect identity privacy.

Even though noticeable progresses have beenmade on face swap-
ping over the past several years, video-realistic face swapping is
still challenging. The differences of face shapes, expressions, head
poses, and illuminations between the source and the target faces
have posed significant difficulties on the problem. In addition, the
human eyes are particularly sensitive to the imperfection in synthe-
sized facial performance and appearance. Previously, researchers
sought to tackle the problem by searching for the most similar
images/frames from an image database [Bitouk et al. 2008] or video
frames [Garrido et al. 2014] and replacing faces through imagewarp-
ing. This line of methods highly relies on the similarity of head
poses, expressions, and illuminations between the source and the
target images. Another line of approaches resorted to reconstruct
3D face models from both the source and the target images and
then re-render the source face into the target background photo-
realistically. Although promising results have been presented [Blanz
et al. 2004; Dale et al. 2011], these methods typically involve man-
ual interventions (e.g., face alignment) from users. More recently,
deep learning approaches [Deepfakes 2019] have been proposed
to automatically swap the faces of two identities. However, they
require a large image dataset of the face identities and expensive
training of the model before running, which undermines the wide
applicability, accessibility, and generality of these methods.

In this paper, we propose a new, automatic, real-time method to
swap the face in the target video by the face from a single source
portrait image. Just imagine a selfie image of yourself and an actor
interview video clip are given, our method can create a new video
clip in which you were taking the interview. In our method, 3D
face models with wrinkle level details, appearances, head poses,
and illuminations are first reconstructed from the source image and
the target video, respectively. Then, a novel face image is rendered
using the identity, predicted wrinkles and adapted albedo of the
source face and the head pose, expression and illumination of the
target face.

Compared to state of the art methods, the main advantages of
our method include: (i) little dependency of the source face data
(i.e., only need a single still portrait image), (ii) fully automatic
and real-time processing, and (iii) swapping both face shape and
appearance. More importantly, unlike existing deep learning based
methods, our method does not require any assumption of the input
face nor require any training data; therefore, our method does
not need to collect a large amount of face images for expensive
and time-consuming model training, which can bring significant
convenience and efficiency to users. As a result, our method can
also generalize well to unseen faces.

In sum, the contributions of this work include:

• an automatic real-time system to swap the face in a monoc-
ular RGB video by the face from a single portrait image;

• a method to predict wrinkle dynamics of the source face in
target expressions; and

• an appearance harmonization method to video-realistically
blend the synthesized face into the target video.

2 RELATEDWORK
Our method consists of 3D face tracking and swapping from video.
We briefly describe recent related works in the two directions below.

3D Face Tracking. Reconstruction of 3D face from video is cru-
cial in graphics and enables many applications in games, films and
VR/AR [Zollhöfer et al. 2018]. A significant body of works stem
from the seminal morphable face model [Blanz and Vetter 1999],
where a statistical model is learned from face scans and later em-
ployed to reconstruct facial identity and expression from videos
or images. Similarly, [Vlasic et al. 2005] and [Cao et al. 2014b] use
multi-linear face models to capture large scale facial expressions.
Due to the strong data prior constraint, they cannot capture high
frequency details such as wrinkles, which requires further refine-
ments [Bermano et al. 2014]. To reconstruct high resolution face
models, structured light and photometric stereo methods [Ma et al.
2008; Zhang et al. 2004] were proposed for face scanning. Passive
solutions using multi-view images [Beeler et al. 2010, 2012, 2011;
Gotardo et al. 2018] and binocular cameras [Valgaerts et al. 2012]
are capable of capturing pore-level geometric details. However,
the aforementioned methods usually require delicate camera and
lighting setup in controlled environment, which is unfriendly to
amateur users and also lacks the ability to process online video
clips. In recent years, monocular methods [Fyffe et al. 2014; Garrido
et al. 2013; Shi et al. 2014; Suwajanakorn et al. 2014] have shown
that shape-from-shading techniques [Horn 1975] can obtain fine-
scale details from single RGB video, which opens up the door to
build 3D faces from legacy video. The works of [Garrido et al. 2016;
Ichim et al. 2015; Suwajanakorn et al. 2015] can build fully rigged
face models and appearance from monocular video. All the above
methods, however, require intensive off-line processing and are not
applicable to real-time applications.

Real-time face capture methods were first developed using RGB-
D cameras [Chen et al. 2013; Hsieh et al. 2015; Li et al. 2013; Weise
et al. 2011; Zollhöfer et al. 2014]. Later, Cao et al. [2014a; 2013]
proposed to capture coarse geometry using regression based face
tracking from a RGB camera. Their follow-up work [Cao et al. 2015]
learns displacement patches from 2D images to predict medium-
scale details. Recently Ma and Deng [2019b] proposed a hierarchical
method to capture wrinkle-level face model via vertex displacement
optimization on GPU in real-time. Another category of methods
solves the 3D face reconstruction problem using deep learning
techniques, including CNN [Guo et al. 2018; Sela et al. 2017; Tewari
et al. 2018] and autoencoder [Bagautdinov et al. 2018; Lombardi
et al. 2018; Tewari et al. 2017; Wu et al. 2018].

Face Reenactment. Face Reenactment transfers the expression
of a source actor to a target video. Researchers proposed to use a
RGB-D camera to transfer facial expressions in real-time [Thies
et al. 2015, 2016; Xu et al. 2014]. Useful scenarios of this technique
include Vdub [Garrido et al. 2015], which transfers a dubber’s mouth
motion to the actor in the target video; FaceVR [Thies et al. 2018a]
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which transfers the facial expression of a source actor who is wear-
ing a head-mounted display (HMD) to the target video; and portrait
animation which transfers the source expression to a portrait image
[Averbuch-Elor et al. 2017] or video [Thies et al. 2018b]. [Ma and
Deng 2019a] directly reenacts the facial expression from video in
real-time without the driving actor by learning expression correla-
tions using a deep learning approach.

Face Swapping. Most face swappingmethods can be categorized
into image-based, model-based, and learning based. 2D image-based
methods [Garrido et al. 2014] select the most similar frame from
the source video and warp it to the target face. Image-to-image
methods [Bitouk et al. 2008; Kemelmacher-Shlizerman 2016] swap
the face by automatically selecting the closest face from a large face
database. Even though compelling results are produced, they cannot
be applied to video since the temporal consistency is not considered.
3D model-based methods [Blanz et al. 2004; Dale et al. 2011] track
the facial performance for both the source and the target faces and
re-render the source face under target conditions. Our method is
also model-based, but it does not need any manual work to help
the tracking and does not search for the closest frame in the source
sequence, which enables it to run in real-time. In addition, Dale et al.
[2011] do not render novel faces but re-time the source video using
dynamic time warping and blend the source and the target images
directly. Therefore, their method also highly relies on the similarity
between the source video and the target video. Our method builds
a 3D face model from the source image at initialization and then
renders it into the target. It maximally reduces the dependence
on source input. Recently, learning-based methods were proposed
to use CNN [Korshunova et al. 2017] or autoencoder [Deepfakes
2019] to learn face representations under various poses, expressions,
and lighting conditions. If enough training data can be collected,
these methods can produce robust and realistic results with proper
post-processing. However, collecting sufficient, often large-scale,
training data for specific faces is non-trivial and time-consuming, or
even infeasible for some cases (e.g., legacy face videos). Furthermore,
the face images they produce are generally low resolution, while
our method does not have the above issues. Recently, [Nirkin et al.
2018] proposed to train a generalized face segmentation network
on large face datasets, so that no additional data was required for
face swapping during testing. Similar to image-based methods, this
method cannot guarantee the temporal smoothness of the output
sequence.

3 APPROACH OVERVIEW
Our method takes a single source portrait image and a target video
clip as inputs, and outputs a video-realistic video clip with the
swapped source face. Our approach consists of several steps as
shown in Figure 2. We briefly introduce our pipeline in this section
and describe the details of each step in the following sections.

We first reconstruct the 3D face models, albedos, illuminations,
and head poses from the source image and each frame of the target
video (Section 4). Each face model is further decomposed into a
coarse model representing facial expressions (Section 4.1) and ver-
tex displacements representing skin wrinkles (Section 4.2). Then,
we synthesize a novel source face mesh with target expression and
predicted wrinkle dynamics (Section 5). We adapt the albedo of
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Figure 2: From the input source image and target video (a),
our system captures fine-scale 3D facial performance (b).
The appearance of the source face is harmonized to match
the target video (c). A novel face is rendered with the source
identity, harmonized appearance under the target condi-
tions (d). The rendered face is blended into thewarped target
frame (e).

(a) Input (b) CoarseMesh (c) Fine Mesh (d) Textured

Figure 3: From an input image (a), a coarse mesh (b) is recon-
structed, and augmented with vertex displacements (c). The
re-rendering with the captured albedo and illumination is
shown in (d).

the source face to that of the target face through solving a Pois-
son equation (Section 6.1). The appearance is further harmonized
by injecting matched noise to compensate for the different shot
conditions (Section 6.2). A novel face image can be rendered by com-
bining the novel mesh and harmonized appearance of the source
face, with the illumination and head pose of the face in each target
frame. Finally, we warp the target frame according to the key points
of the rendered face and blend them seamlessly (Section 7).

4 FACE TRACKING
In this section, we first describe how to capture coarse-scale 3D
facial performance in Section 4.1. Then, we describe how to refine
the captured model via shape-from-shading to obtain fine-scale
details. The same method is applied to both the source image and
every frame in the target video.

4.1 Coarse Face Modeling
Reconstruction of a 3D face model from a 2D image is an intrinsi-
cally ill-posed problem. Similar to [Shi et al. 2014; Wang et al. 2016],
we fit a parametric 3D face model to the image. Specifically, we use
the FaceWarehouse dataset [Cao et al. 2014b] to construct a reduced
bilinear core tensor Cr . A specific 3D face model can be created by
multiplying the tensor Cr with a 50-dimensional identity vector
α and a 25-dimensional expression vector β . We also predefine 73
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key points on the face model and run the local binary feature (LBF)
based regression method to automatically track the corresponding
2D facial landmark locations from the image. Then, a coarse face
model can be estimated by minimizing the distance between the
detected 2D landmarks and the projected 3D key points:

Etrackinд =
73∑
i=1

∥[R(vi ×2 α ×3 β) + t] − pi ∥
2
2 , (1)

where vi and pi are the corresponding sparse 3D and 2D key
point pairs, R and t are the rotation and translation of the head,
respectively. Figure 3b shows the coarse face model captured from
the input in Figure 3a.

4.2 Shape from Shading Refinement
The reconstructed face model contains 5.6K vertices and 33K tri-
angle faces presenting large-scale facial deformations. We further
refine it with fine-scale details by estimating per-vertex displace-
ments by employing the algorithm in [Ma and Deng 2019b]. Since
the resolution of the mesh is too low to faithfully reproduce the
subtle details of the input image, we recursively apply 4-8 subdi-
vision [Velho and Zorin 2001] to the mesh until the vertices and
pixels have an approximately one-to-one mapping. Note that the
subdivision is applied to the source face model only and then copied
to the target face model, so that the source and the target face share
the same topology.

Inspired by the work of [Ma and Deng 2019b], we encode the
fine surface bumps as the displacements along surface normals and
recover them jointly with the albedo and illumination using shape-
from-shading [Horn 1975]. We assume human faces are Lambertian
surfaces, and parameterize the incident lighting with spherical
harmonics [Basri and Jacobs 2003]. Thus, the unknown parameters
can be estimated by minimizing the difference between the input
face and the synthesized face:

Eshadinд =
K∑
i=1

∥Ii − l · SH (ni )ρi ∥
2
2 . (2)

Here, Ii is the sampled image gradient by projecting the i-th
vertex onto the image plane according to head pose, and K is the
number of vertices after subdivision. l is an unknown 9-dimensional
vector for the spherical harmonics coefficients of incident lighting,
and SH is the second order spherical harmonics basis functions
taking a unit length surface normal ni as the input. The vertex
normal ni is calculated using the vertex positions of itself and its
1-ring neighbor vertices. We assume that the fine face model is
formulated as moving each vertex of the coarse model along its
normal for a distance di . Hence, the unknown normal ni of the fine
model is represented as a function of variable di . ρi is the unknown
face albedo at vertex i , which is initialized as the average face
albedo provided by the FaceWarehouse dataset [Cao et al. 2014b].
We employ block coordinate decent algorithm to alternatively solve
the unknown illumination l , albedo ρ, and displacement d .

Illumination. We use the albedo and displacement from the
previous frame to estimate l . We also impose a regularization
term

lt − lt−12
2 to penalize sudden changes between consecu-

tive frames. The shading energy function Eq. 2 can be reduced and

TargetSource Predicted

Fine
Coarse

Figure 4: Face Mesh swapping from source (left) to target
(middle). Top right shows the coarsemesh of the source iden-
tity performing target expression, and bottom right is the
mesh with wrinkle details.

solved as a highly over-constrained linear system with K + 9 rows
and 9 columns.

Albedo. Similarly, we use the estimated illumination and dis-
placement from the previous frame to estimate ρ. To prevent the
high frequency image gradients from being interpreted as albedo
changes, we incorporate a Laplacian regularization term ∥Lρ − Lρ̄∥2

2
to adapt the albedo to be as smooth as the prior average albedo ρ̄.
L is the graph Laplacian matrix with respect to the mesh. This also
leads to solving a sparse linear least square problem with 2K rows,
K columns, and K + 2E non-zero entries, where E is the number of
edges in the subdivided mesh. Note that the albedo is computed
only at the start of the video and remains fixed thereafter.

Displacements. By substituting the estimated illumination and
albedo, the shading energy function Eq. 2 is still non-linear and
under-constrained in terms of displacements di . Here we impose
two additional constraints. For aC2 surface, its local displacements
should change smoothly. Similar to albedo, a smoothness constraint
is applied: ∥Ld ∥2

2, where L is the same graph Laplacian matrix. We
assume that the coarse mesh already provides a good approximation
of the ground truth, thus a regularization constraint is applied: ∥d ∥2

2.
The weight for the smoothness constraint and the regularization
constraint are set to 30 and 5, respectively. Figure 3c shows the
refined mesh using vertex displacements, and Figure 3d shows the
rendering result using the estimated albedo and illumination.

5 FACE SWAPPING
The task of face swapping is defined as replacing the face in the
target video with the face from the source image while retaining
the facial performance of the target actor. The hair, body and back-
ground in the target video are intact. Unlike recent deep learning
based face swapping methods that learn face features in 2D images,
our method also takes care of 3D face mesh swapping. We break the
face geometry into large-scale expression and fine-scale wrinkles,
and transfer them separately from the target to the source.



Real-time Face Video Swapping From A Single Portrait I3D ’20, May 5–7, 2020, San Francisco, CA, USA

Coarse mesh swapping. The coarse mesh of the swapped face
is represented as the combination of the identity of the source face
and the expression of the target face. The mesh is generated by
multiplying the FaceWarehouse core tensor by the identity param-
eter αS of the source image and the expression parameter βT of
each frame in the target video: M̃S

t = Cr ×2 αS ×3 βTt . Top right
of Figure 4 shows the swapped coarse mesh for one frame of the
target video. The whole mesh sequence is temporally smooth since
αS is constant and βT changes smoothly in the expression PCA
space.

Wrinkle prediction. The coarse mesh is further augmented with
wrinkle details. The objective is to predict the most plausible person-
specific wrinkle motions of the source actor under the target expres-
sion. We tackle this using the Laplacian Coating Transfer technique
[Sorkine et al. 2004]. For the source face, we compute the Lapla-
cian coordinates of the coarse mesh M̃S

0 and the fine mesh MS
0

respectively for the initial source face reconstructed from image.
The coating of the source mesh is defined as ξ S0 = L(MS

0 ) − L(M̃S
0 ),

where L is the Laplacian operator. Suppose that there exists a frame
in the target video that has the same expression as of the source
image. Then the corresponding coating of the target can be de-
fined similarly as ξT0 = L(MT

0 ) − L(M̃T
0 ). For any frame t in the

target video, the fine-scale motion DT
t = ξTt − ξT0 is transferred

to the source mesh with a local rotation R at each vertex which
is the rotation of the tangent space between the coarse meshes
M̃S
t and M̃T

t . The coating of the source face at frame t is then pre-
dicted as ξ St = ξ S0 + R(D

T
t ). Finally, the fine-scale source mesh is

reconstructed by solving the following inverse Laplacian:

MS
t = L−1(L(M̃S

t ) + ξ
S
t ) = L−1(L(M̃S

t ) + ξ
S
0 + R(D

T
t )). (3)

In practice, we first find a frame with the most similar expression
in the target video clip to that of the source image by measuring
the squared Mahalanobis distance:

Sim(βTt , β
S
0 ) = (βTt − βS0 )

TC−1
exp (β

T
t − βS0 ), (4)

where Cexp is the covariance matrix of expression constructed
from the FaceWarehouse dataset. Then the mesh from the found
frame is set to MT

0 and used to compute the coating transfer. For
live applications, we set the mesh from the first frame asMT

0 and
keep updating it whenever a closer expression is found using Eq. 4.
Bottom right of Figure 4 shows the result of coating transfer where
the person-specific nasolabial folds of the source actor are retained
when performing the target expression.

6 APPEARANCE HARMONIZATION
Synthesis of a photo-realistic novel face video that combines the
source face and the target background is challenging. The colors of
the source face and the target face may be quite different, which
leads to obvious seams along the face boundary. In addition, the
source face image and the target video are usually shot under dif-
ferent lighting conditions. Even alpha blending or gradient domain
composition may produce unrealistic results. A viable solution is
to apply image harmonization to the rendered face and the target
frame [Sunkavalli et al. 2010]. However, this method is not suit-
able for our real-time system, since it leads to the solving of very
large sparse linear systems, and cannot be ported to GPU trivially.

Source

Target Adaptation Noise Matching

Figure 5: The appearance of the source face is harmonized
to match that of the target face through albedo adaptation
(middle) and noise matching (right).

Our experiments also show that it cannot guarantee the temporal
consistency of the resulting sequence. Therefore, we propose to
harmonize the facial appearance in texture space. We compute the
adapted albedo and the matched noise for each vertex. The values
are computed only for the first several frames of the video when the
albedo of the target face is also being updated simultaneously. Then,
they will remain fixed during the rendering of the remaining video
frames so that the rendered facial appearance can be guaranteed to
be temporally consistent.

6.1 Albedo Adaptation
We compute an adapted albedo color at each vertex for face render-
ing. The adapted albedo is supposed to have a similar global color
to the target face while having the same local gradient to the source
face. This is equivalent to the solving of a Poisson equation [Pérez
et al. 2003] in the texture space: the albedo values of the boundary
vertices are set to the target face albedo and the albedo gradients
of the inner face are set to the source face albedo gradients. The
finite difference discretization of the Poisson equation yields the
following discrete optimization problem:

Ealbedo =
∑
i , j ∈E

(ρSi − ρSj ) − (ρ̂i − ρ̂ j )
2

2
,

s.t. ρ̂i = ρTi , for i ∈ ∂M
(5)

where E denotes the edges of the face mesh, and ∂M denotes
the boundary vertices of the face mesh. ρS , ρT ,and ρ̂ represent the
albedo of the source face, the albedo of the target face, and the
adapted albedo, respectively. Figure 5 (second column) shows the
effect of the albedo adaptation.
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(a) Source (b) Triangulation (c) Warping

(d) Blend without warping (e) Blend with warping

Figure 6: A target frame is triangulated using facial land-
marks and boundary vertices (b). The frame is warped ac-
cording to the positions of those vertices on the rendered
face (c). (d) and (e) show the final blending results without
and with warping.

6.2 Noise Matching
The rendered face using the adapted albedo color could be less
noisy compared to the background of the target video, because of
the imposed smoothing term for albedo estimation (see Section 4.2).
We inject a noise color for each vertex to match the noise pattern in
the target background. We first compute the noise γ in the source
face and the target face, respectively, as the difference between the
input image and the rendered face:

γi = Ii − l · SH (ni ). (6)

Then, we apply histogram matching to obtain the matched noise
γ̂i :

γ̂i = histmatch(γ Si ,γ
T
i ), (7)

where histmatch() denotes the transfer function that matches the
histogram of the source noise γ Si with that of the target noise γTi .
Figure 5 (third column) shows the effect of noise matching.

7 VIDEO RENDERING AND COMPOSITION
Now we can render a novel image of the source face under the
target condition and blend it to the target background. The fine-
scale modelMS

t of the novel face is computed using Eq. 3. The head
pose is expected to be identical to that of the target face so that the
rendered face is exactly overlaid on the target face region. The final
vertex position M̂ at frame t is computed as:

M̂ = RTMS + tT , (8)

where RT , tT represent the rotation and translation of the target
face at frame t , respectively (see Section 4).

Next, we compute the vertex normal n̂ for the novel face model
and render it with the harmonized appearance under the target
illumination lT :

Îi = [lT · SH (n̂i )](ρ̂i + γ̂i ). (9)

A potential issue of face swapping is that the face shapes of the
source and the target could greatly differ. For example, when an
oblong face (Figure 6b) is swapped by a square face (Figure 6a), the
eyes/ears in the background might be covered by the rendered face,
which can lead to certain artifacts (Figure 6d). To alleviate the issue,
we warp the background image according to the boundary and
key points of the face. Specifically, we project the boundary and
landmark vertices of the target face onto the image plane and use
them to subdivide the image with Delaunay triangulation (Figure
6b). Since the face topology is fixed, the triangulation is applied only
once and cached. Then, the same vertices of the novel face model M̂
are projected to the target frame and used to warp the background
(Figure 6c). The above operations can be efficiently done in an
image quad drawing shader, where the vertex projections of the
novel mesh are used as positions and those of the target mesh are
used as texture coordinates. Finally, we blend the rendered face into
the warped background with GPU alpha blending. Again, we pre-
build an alpha map in the texture space where boundary vertices
have smaller alpha values. The final composition result is shown in
Figure 6e.

8 IMPLEMENTATION DETAILS
We implemented our approach in C++ and CUDA. The coarse mesh
reconstruction stage runs on CPU, and the other stages run on
GPU concurrently. The linear equation in illumination estimation
is solved using the cuSolver. The non-linear least square problem
in displacement recovery is solved by a Gauss-Newton solver in
CUDA kernels. We run 10 Gauss-Newton steps for each frame, and
the optimal step length is computed by a Preconditioned Conjugate
Gradient (PCG) solver in 10 iterations. For albedo recovery and
appearance harmonization, we solve the large sparse linear system
by running the similar PCG solver for 100 iterations and match the
noise histogram of 256 bins in CUDA kernels.

9 RESULTS
We demonstrate some results of our method in Figure 7 and Figure 8.
In Figure 7 we swapped the same source face into multiply different
target face video clips. Even though the skin color is changed to
be in harmony with the target face, the face shape, eyebrows, nose
and mustache of the source face remain in the result. In Figure 8
we swapped the target face by multiple different source faces. Note
that face shapes and facial features such as eyebrows, nose and
nevus in the results are swapped by those of the source faces, while
skin color, expression and lighting are inherited from the target
face. Figure 10 and 11 show more results for faces with various
ethnicities, genders, and in different skin colors, head poses and
expressions. Please refer to the enclosed supplemental demo for
video results.

All the experiments in this paper ran on a desktop computer with
Intel Core i7 CPU @3.7 GHz and nVidia Geforce GTX 2080Ti GPU.
The input images and video clips were captured using a Logitech
C922x Pro webcam. We shot the source images at 1080P resolution,
and shot the target video at 720P resolution and 60 FPS. The coarse
mesh reconstruction takes 1 ms CPU time; the mesh refinement,
swapping, rendering and composition take 8 ms CPU and 18 ms
GPU time. The albedo estimation and adaptation take 3 ms in total
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and only run at the first several frames of the video. Overall, our
system ran at 55 FPS on our experimental computer.

TargetSource Result

Figure 7: Face swapping results (second column) from the
same source face (first column) to multiple target faces
(third column). Rectangles show some examples of facial
features (eye brows, nose shape, moustache, etc) are trans-
ferred from the source, while the expressions are extracted
from the targets (eyebrow raising, mouth opening).

9.1 Evaluation
To quantitatively evaluate our method, we present a self swapping
experiment in Figure 9. We take the first frame of the video as the
source image and swap the faces in the remaining frames of the
video. The heat map of the photometric error in Figure 9 visualizes
the difference between the ground truth frame and the synthesized
frame in RGB color space. Most regions have a good approximation
with error lower than 3 in the range [0, 255]. Large errors occur at
high frequency areas, such as eyebrows, or at background which
are caused by background warping.

9.2 Comparisons
Previous 2D image-basedmethods [Bitouk et al. 2008; Kemelmacher-
Shlizerman 2016] automatically select the most similar face from
a large image database for face swapping. However, they cannot
handle videos since different faces can be selected when the expres-
sion is changed. Thus, the results cannot be temporally consistent.
Garrido et al. [2014] use videos as input for both the source and
the target faces and select the most similar frame from the source
video. If the source video did not contain enough variations, arti-
facts may occur in the results. In the following, we mainly compare
our method with the state-of-the-art model-based methods and
learning-based methods.

Comparisonwithmodel-basedmethods. We compared ourmethod
with a 3Dmodel-basedmethod FaceSwap[2019] in Figure 10. FaceSwap

TargetSource Result

Figure 8: Face swapping results (second column) from mul-
tiple source images (first column) to the same target video
(third column). Note face shapes are altered after swapping.
Rectangles show some examples of facial features (lip shape,
acnes, freckles, etc) are transferred in high resolution. Im-
age courtesy: The White House (public domain).

Source Target Result Photometric Error
16

0

Figure 9: The photometric error of a self-swapping in which
we use the first frame as the source image. Image courtesy:
The White House (public domain).

also fits a 3D face model for both the source and the target frames
by minimizing the difference between the projected shape and the
localized landmarks. However, the 3D model is only used as a proxy
to warp the source face image to the target; the lighting difference
between the two images are not taken into account. The rendered
face may look unrealistic when the lighting conditions of the source
and the target frames highly differ. This method does not take iden-
tity consistency into consideration either, therefore, the synthesized
facial motion is not temporally smooth. The incoherence is better
visualized in the supplemental video.

Comparison with learning-based methods. We also compared
our method with the state-of-the-art deep learning methods [Deep-
fakes 2019] and [Nirkin et al. 2018] in Figure 11. Deepfakes can
swap faces between two subjects. However, this method needs to
train one encoder and two decoders using two large face image
datasets of the two specific subjects. At runtime, the source image
is passed to the encoder and then decoded by the decoder of the
target subject. For comparison, we recorded two high resolution



I3D ’20, May 5–7, 2020, San Francisco, CA, USA L.Ma, and Z.Deng

TargetSource FaceSwap Ours

Figure 10: Compared with Faceswap[2019], we do not unex-
pectedly change the eye gaze of the target. Our method is
alsomore temporal coherent aswekeep a constant face iden-
tity and texture.

video clips (1080p) for our two subjects. We cropped the faces in
a 512 × 512 region, yielding about 32K training images for each
subject. We trained the model at batch size 64 for 100K iterations.
The first row of Figure 11 shows the comparison between Deepfakes
and our method on the subjects. We also ran our method on the
original videos from the FaceForensics++ [Rössler et al. 2019] dataset
and compare with the Deepfakes results the dataset provided. It is
obvious that the results by Deepfakes are much more blurring than
ours, and the method of Deepfakes cannot change the face shape.
In contrast, our method produces high resolution results with clear
details and correct face shapes. Moreover, our method is more appli-
cable and friendly to users than Deepfakes, since our method does
not require the collecting of large-size training data of the specific
faces nor expensive and time-consuming model training. [Nirkin
et al. 2018] is another learning-based method that trained a deep
segmentation network to guide the face swapping area. We run the
code provided by the authors on the same input. As shown in Fig-
ure 11, their result is less video-realistic compared with Deepfakes
and our method. In the supplemental video, we show that their
result sequence is also much more jumpy than the other methods.

10 DISCUSSION AND CONCLUSION
In this paper we present an automatic, real-time method to swap the
facial identity and appearance in RGB videos from a single portrait
image, while preserving the facial performance in terms of poses,
expressions, and wrinkle motions. Our method runs fully automatic,
without requiring pre-collected large-size training data of both the
source and the target faces, and can create video-realistic results
for faces of various skin colors, genders, ages, and expressions.

Despite ourmethod hasmany advantages over previousmethods,
it comes at a price. Since we only use a single image to capture
the source face, it is inherently ambiguous to attribute a facial
feature to identity or to expression. For example, if the source
image shows oblique eyebrows, two possibilities exist: the subject
has oblique eyebrows in the neutral expression; or the subject

TargetSource Deepfakes OursNirkin et al. 2018

Figure 11: Compared to [Deepfakes 2019] and [Nirkin et al.
2018], our method can change the face shape and our result
contains much more facial details without the need of any
training data.

Source Result

(a) Occlusion (b) Large head rotation

Figure 12: Our method cannot effectively handle occlusions
(a) or large head rotations (b).

has flat eyebrows but in the oblique eyebrows expression. It is
very difficult to distinguish between the two possibilities even for
humans. If our method reconstructs the face with oblique eyebrows
in the neutral expression, the oblique eyebrows identity feature
will persist for the whole rendered video. Otherwise, the oblique
eyebrows expression will be replaced by the target expression such
that the rendered video will not have this facial feature anymore.
To overcome this limitation, a viable solution is to use a collection
of images of the source face, from which a more accurate identity
can be reconstructed [Roth et al. 2016].

Furthermore, our method does not swap the eyes and inner
mouth of the target video. People have diverse iris, and pupils
in size and color. Eyes are crucial for humans to recognize faces.
With the eyes untouched, the result quality is highly affected. We
would like to extend our method to swap eyes and mouth regions
in future work. Facial occlusions also cannot be effectively han-
dled by our current method. Figure 12(a) shows the glasses frame
is warped after swapping due to expression change. In addition,
large head poses such as side-view may produce artifacts as shown
in Figure 12(b), since the facial landmark detection algorithm is
not accurate for extreme poses. Artifacts may also occur when the
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source and the target faces have different styles of face boundaries,
e.g., one with hair at forehead and one without. After solving the
Poisson equation, the hair color will bleed into the inner face such
that the adapted albedo seems problematic, which hampers the
realism of the synthesized face. This could be tackled by employing
a face segmentation method; only the inner face without hair occlu-
sion is swapped. In future work, we also would like to explore the
possibility of hair swapping. Hair colors and styles are important
features to recognize people. We believe the result quality will be
highly improved if the hair can be swapped simultaneously along
with the faces.
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