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Figure 1: Our automated approach can real-time transform the neutral facial expression in input video (top) to happy expression (bottom).

Abstract
This paper describes a novel real-time end-to-end system for facial expression transformation, without the need of any driving
source. Its core idea is to directly generate desired and photo-realistic facial expressions on top of input monocular RGB video.
Specifically, an unpaired learning framework is developed to learn the mapping between any two facial expressions in the
facial blendshape space. Then, it automatically transforms the source expression in an input video clip to a specified target
expression through the combination of automated 3D face construction, the learned bi-directional expression mapping, and
automated lip correction. It can be applied to new users without additional training. Its effectiveness is demonstrated through
many experiments on faces from live and online video, with different identities, ages, speeches, and expressions.
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1. Introduction

Realistic facial expression creation and transformation has been a
long-standing problem in computer graphics and computer vision.
Thus far, popular approaches usually require a driving source or the
combination of multiple ones, such as capturing a subject’s perfor-
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mance and then transferring it to virtual faces [DCFN06, SLS∗12,
TZN∗15, AECOKC17, VBPP05], and speech-driven facial anima-
tion [Bra99,EGP02,DNL∗06,DN08a,SSKS17,TKY∗17,KAL∗17].
However, these methods only provide a way to drive the face to
follow the performed expressions, and do not provide the flexibil-
ity to synthesize new facial expressions on top of the original, such
as being happier or being angry instead of neutral while speaking.
In addition, the transferring approaches usually break the synchro-

submitted to COMPUTER GRAPHICS Forum (9/2018).



2 L. Ma & Z. Deng / Real-Time Facial Expression Transformation for Monocular RGB Video

nization between the face reenactment and audio from the source
video and thus are unsuitable for speech video.

An ideal solution to the above problem is to generate desired and
photo-realistic facial expressions on top of the source expression
of an input monocular video clip, without the need of any driving
sources. One straightforward way is to per-frame edit the source ex-
pression. Clearly, this is quite tedious and time-consuming; further-
more, it is non-trivial to ensure the temporal dynamics of the edited
facial expression. Another technical path explored previously is to
learn a mapping M : X ⇒ Y between two sequences X and Y that
are semantically aligned. For example, image-to-image translation
approaches [IZZE16, JAFF16] are used to address this problem by
transferring image style or content between image pairs. However,
they often require a large number of aligned face images of vari-
ous identities, expressions and environment lighting as the training
data. The problem becomes even more difficult when dealing with
speech video, because lip synchronization needs to be preserved in
the transformed and re-rendered video, besides the intrinsic com-
plexity and subtlety of facial expressions.

To tackle the above problem, we propose a complete pipeline
to real-time transform the source expression of the subject in
an input (source) monocular RGB video clip to a user-specified
target expression and then photo-realistically re-render the same
performance but with the target expression. The generated facial
expression sequence is temporally dynamic, coherent, and lip-
synchronized to the source audio. Specifically, the main compo-
nents of our system (Figure 2) are briefly described as follows:

• 3D facial performance reconstruction. We start the process
by reconstructing 3D facial performance from an input video
clip. The facial performance is reconstructed by detecting 2D
facial landmarks and then estimating the 3D facial deformations
(i.e., bilinear identity and expression parameters) as well as 3D
head poses and camera parameters. Then, we estimate the light-
ing conditions and facial albedo using the shading cues (see §3).
• CycleGAN-based expression mapping. We train a Cycle-

GAN based expression mapping model to learn the bi-directional
mapping between two facial expressions based on an unpaired
face video dataset. Different from existing image based ap-
proaches using Convolutional Neural Networks (CNN), we learn
the model in a facial blendshape space. We will discuss its archi-
tecture and training in §4.
• Expression transformation and lip correction. We apply the

trained CycleGAN-based expression mapping to a small window
of neighboring frames for smoother and more confident results
in target expression (see §5). We then synchronize lip motion to
the source audio by minimizing the distance of key lip vertices
before and after transformation in §5.1.
• Composition. We re-render the face with the transformed fa-

cial expression, original head poses, lighting, and albedo map.
Since the shapes of the mouth might be significantly different
between the original source expression and the transformed tar-
get expression, our approach warps the mouth region from the
source frame into the transformed face. Finally, we complete
the composition by putting the re-rendered face and the warped
mouth regions in different image layers and blending back to the
original input video (see §5.2).

The main contributions of this work can be summarized below:

• a complete, real-time pipeline for facial expression transforma-
tion on monocular RGB video, without the need of any driving
sources;

• a data-driven approach to solve the automatic bi-directional
transformation between a pair of facial expressions; and

• a novel optimization formula for temporally coherent and lip
synchronized expression transformation.

2. Related Work

Our system reconstructs 3D facial performance of the subject
from an input video clip, transforms his/her facial expression to a
user-specified target expression, and finally photo-realistically re-
renders his/her performance with the target expression. Thus, the
literature review in this section is specifically focused on the re-
cent, most related efforts on facial reconstruction, video-based face
reenactment, expression manipulation, and image transformation.
Readers can refer to [DN08b, LAR∗14] for more comprehensive
reviews on facial animation.

2.1. Face Reconstruction

Many face reconstruction methods have been proposed over the
past decades. A significant portion is data-driven methods stem-
ming from the seminal morphable face model [BV99, BBPV03]
where a statistical model is employed to reconstruct facial iden-
tity and expression from images and/or video. Vlasic et al. extend
this method with a multi-linear model that is constructed along the
axes of vertices, identities, expressions, and visemes [VBPP05].
Similarly, the FaceWarehouse [CWZ∗14] employs a bilinear face
model that consists of 47 FACS-based [EF78] blendshapes for each
identity. Recently, Cao and colleagues proposed regression based
real-time performance capture from RGB video [CWLZ13,CHZ14,
CBZB15]. The works of [SWTC14, GZC∗16] capture fine facial
details based on the shape-from-shading technique from monocu-
lar RGB video in an off-line manner.

On the other hand, physics based methods [LTW95, SNF05,
IKKP17] build an anatomically accurate, volumetric model with
facial musculature, tissue, and skeleton. Muscle activations in the
physical model are capable of simulating contacts and collisions
of face with external objects. Ichima et al. introduced volumetric
blendshapes combining intuitive control of blendshapes and the
capability of realistic physics-based simulation [IKNDP16]. Sim-
ilarly, Cong et al. create a blendshape system for facial muscles
that drives underlying anatomical and biomechanical muscle dy-
namics [CBF16].

2.2. Video-based Face Reenactment

One type of face reenactment methods replaces the face iden-
tity of a target video clip with a source actor while preserving
its original performance [DSJ∗11, GVR∗14]. On the other hand,
the works of [XCLT14, TZN∗15, TZS∗16] transfer the facial ex-
pression of a source actor to a target video clip. Li et al. pre-
sented a data-driven solution to synthesize the target video from
a driving actor by retrieving frames from a pre-recorded dataset

submitted to COMPUTER GRAPHICS Forum (9/2018).



L. Ma & Z. Deng / Real-Time Facial Expression Transformation for Monocular RGB Video 3

Reconstruction Transformation

Generator Discriminator

Corrective

Input Output

blendshape
weights

Figure 2: From an input face video clip, our system first reconstructs the head pose, identity, expression, and albedo map of its 3D face,
as well as camera parameters and environment lighting. After that, the source expression in the face is transformed to the desired (target)
expression through CycleGAN-based expression mapping in the blendshape space and followed by mouth corrective and smoothing. The
re-rendered face with the target expression is finally blended back to the input video.

of the target person [LXW∗12]. Expression transfer for actor-
to-avatar [WBLP11, FJA∗14] has also been extensively explored
previously. In addition, prior works [CTFP05, GVS∗15, SSKS17]
produce photo-realistic speech animation in which lip motion is
matched with input audio.

2.3. Expression Manipulation

Some previous works manipulate the facial expression or facial
components in images or video. For example, Yang et al. transfer
a local facial component (e.g., smiling mouth) from one image to
another [YWS∗11]. Some other methods aim at manipulating eye
gaze in 2D video [KPB∗12, GKSL16] or editing 3D facial anima-
tion crafted by artists at the sequence level [LD08, MLD09]. The
work of [YBS∗12] achieves exaggeration, attenuation, or replace-
ment of facial expression in parts of 2D video. In this method, the
resulting video is synthesized through image warping or frames re-
ordering, and thus it cannot effectively handle illumination changes
incurred by the change of expression. It also lacks the capability of
creating novel facial expressions while our method can create novel
target facial expressions that do not exist in the original source
video. Malleson et al. continuously blend facial performance video
of an actor, which may contain different facial expressions or emo-
tional states [MBW∗15] .

2.4. Image Transformation

We complete this section by reviewing some recent image transfor-
mation/style transfer methods developed in computer vision com-
munity. “pix2pix" [IZZE16] employs conditional adversarial net-
works to learn the mapping between image pairs. The works of
[JAFF16, GEB16] combine the style and content from two im-
ages and synthesize a novel image using CNN. Taigman et al.
transfer face images into emojis by training a domain transfer net-
work on millions of face images [TPW16]. Our approach builds on
the CycleGAN framework [ZPIE17] that learns a mapping func-
tion between two unpaired image domains using two GAN mod-
els [GPAM∗14]. The works of [LZZ16, SLH∗17, CCK∗17] devel-
oped variants of GAN models for face attributes synthesis, such as

gender/age modification and expression transformation. However,
those imaged based GAN models are usually limited to generating
low resolution images and likely to incur artifacts on face or back-
ground change. In addition, none of the above methods can handle
photo-realistic and temporal consistent transformations for image
sequences and thus they cannot be straightforwardly extended for
video-based facial expression transformation.

3. 3D Facial Performance Reconstruction

In this section, we reconstruct 3D facial performance frame by
frame from an input face video clip. We employ the real-time facial
performance capture method in [WSXC16,SWTC14]. We summa-
rize their method in the following and refer readers to their papers
for details. For each frame, we first track a set of 2D facial land-
mark locations using the local binary feature (LBF) based regres-
sion [RCWS14] (Figure 3a). Then, we reconstruct the 3D facial de-
formation and head pose by minimizing the difference between the
projected 3D facial features and the corresponding 2D landmark
locations. Finally, we estimate the lighting conditions and facial
texture using the first several frames and thus reconstruct the 3D
facial performance.

We represent 3D facial models using multi-linear models
[VBPP05,CWLZ13]. Specifically, we describe a 3D face using two
low-dimensional vectors that control identity and expression, re-
spectively:

M = R(Cr×2uT×3vT )+T, (1)

where M represents the facial geometry of a subject, R and T repre-
sent the global rotation and translation of the subject respectively,
Cr is the reduced core tensor, and u and v are respectively identity
and expression parameters (also called the identity vector and the
expression vector in the remaining writing).

Our multi-linear model is constructed based on the FaceWare-
house dataset [CWZ∗14]. In our experiments, the dimensions of
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the identity vector u and the expression vector v are set to 50
and 46, respectively. Specifically, we use a Delta blendshape for-
mulation [LAR∗14] to represent the face with the expression
vector {vi}46

i=1, where 0 ≤ vi ≤ 1. Given u, its corresponding
individual-specific blendshape face is obtained as B = Cr×2uT =
{B0,B1, ...,B46} and M = R(B0 +∑

46
i=1 vi(Bi−B0))+T .

Then, using the algorithms in [WSXC16], we first reconstruct
3D head pose and facial deformation for each frame. An example
of 3D face construction is shown in Figure 3b. After that, we es-
timate the lighting condition and texture of the face using the first
several frames and assume constant for the rest of the video, follow-
ing the work of [SWTC14]. In this process, the face surface is as-
sumed Lambertian with albedo ρ(x,y), represented as RGB values
in texture space. The lighting of the Lambertian surface is mod-
eled using spherical harmonics [BJ03]. We solve for the lighting
coefficients (i.e., lighting coefficients of the harmonic expansion)
and texture in an analysis-by-synthesis way such that the differ-
ence between the synthesized image and the input video frame is
minimized [SWTC14]. To this end, we can synthesize a face im-
age (Figure3c) based on “hypothesized” lighting coefficients l, the
albedo map ρ(x,y), and a per-pixel normal estimate n(x,y):

I(x,y) = lT ρ(x,y)Y (n(x,y)). (2)

(a) Landmarks (b) Geometry (c) Texture

Figure 3: An example of 3D face reconstruction from an input
frame: The detected 2D facial landmarks (a), the resulting face
model without (b) and with (c) texture.

4. Cycle-Consistent Expression Mapping

We now describe how to transform the source expression in the
input video to a specified (target) expression. Facial expressions
can be quite complicated; directly mapping the facial appearance
from one expression to another requires a significant amount of
training examples to cover the varieties across illuminations, races,
ages, genders, etc. Instead, with the above reconstructed facial de-
formations and texture, we propose to learn this expression map-
ping in the blendshape weights space {vi}46

i=1. Since our approach
may need to take speech video as the input, theoretically we need to
collect a large number of training blendshape pairs that are aligned
at the phoneme level to learn an effective mapping between two
expressions. Collecting such a training dataset is dauntingly time-
consuming and error-prone due to phoneme alignments. Besides,
the transformed expression needs to be continuous and smooth.

DX
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F(y)

G(x)

G(F(y))
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Figure 4: Two mapping functions G and F between two expressions
X and Y are learned, where G : X → Y and F : Y → X . DX and DY
are discriminators for X and Y , respectively. The loss of mapping
cycle is denoted as red dash lines.

To address the above challenges, at the first step, we em-
ploy the Cycle-Consistent Generative Adversarial Network (Cycle-
GAN) [ZPIE17] to learn the mapping between a source expression
and a target expression, without phoneme-phoneme alignments.
Compared to the original CycleGAN model that can only take an
image as input, our model directly consumes blendshape weights,
which are transparent to identity, pose, texture, and lighting condi-
tions. Our model training can also converge faster and requires sig-
nificantly fewer training data than the original CycleGAN model.

4.1. Blendshape Weights Mapping

We now describe how we employ the CycleGAN model to learn the
expression mapping in the blendshape weights space. From the re-
constructed blendshape weights of the used training video dataset
[HJ10], we first sample training expression pairs (xi,yi) indepen-
dently from a source domain and a target domain. Next, given sam-
ples in two expression domains X and Y (e.g., neutral and happi-
ness), a mapping function G : X → Y is learned, with the expecta-
tion that the transformed samples G(x) are as close as possible to
real samples in domain Y .

Our method constructs a CycleGAN-based expression mapping
model by learning a backward mapping function F : Y → X . As il-
lustrated in Figure 4, a real sample x in domain X is transformed
to G(x) in domain Y and then mapped back to F(G(x)) in domain
X . Similarly, a cycle transformation of y is expressed as G(F(y)).
To reduce the space of possible mapping functions, we enforce the
result of cycle transformation to be as close as possible to the cor-
responding real samples, i.e., F(G(x))≈ x and G(F(y))≈ y.

This cycle-consistent loss is measured as:

Ecyc(G,F) = ‖F(G(x))− x‖1 +‖G(F(y))− y‖1 . (3)

Our model also includes two discriminators DX and DY in order
to distinguish between the transformed samples G(x),F(y) and cor-
responding real samples y, x. Specifically, DY aims to differentiate
the transformed sample G(x) from the real sample y and DX aims to
differentiate F(y) from x. The objective function can be expressed
as:

Egan(G,DY ) = Ey∼pY [logDY (y)]+Ex∼pX [log(1−DY (G(x)))]

Egan(F,DX ) = Ex∼pX [logDX (x)]+Ey∼pY [log(1−DX (F(y)))].
(4)
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Figure 5: The generator G maps a source expression x to the target
y through a deep neural network. The network consists of input
and output layers with dimension d = 46, and 3 hidden layers with
dimension m = 100.

The full energy (Eq. 5) is a summation of Eq. 3 and Eq. 4, with λ

(set to 10 in our experiments) controlling the weight for the cycle-
consistent loss:

E(G,F,DX ,DY ) = Egan(G,DY )+Egan(F,DX )+λEcyc(G,F).
(5)

The learned generators G and F are used for the mapping between
the source expression and the target expression. Given a target ex-
pression vg from the generator, a 3D face can be created using Eq. 1.

4.2. Architecture

We developed two generators and two discriminators for the Cy-
cleGAN based expression mapping model as presented in Figure 4.
A generator is a fully connected neural network (Figure 5) con-
taining an input layer, 3 ReLU hidden layers, and a sigmoid output
layer. Each hidden layer has 100 units while both the input and the
output layers have 46 units corresponding to the expression vector.
The sigmoid function in the output layer helps to regularize each
element of the target expression vector to reside in the valid range
[0,1]. A discriminator has a similar structure except that the output
layer has only one unit producing a probability p. This probability
p indicates the chance that the input comes from real data sam-
ples (i.e., 1-p chance is from a generator). For instance, 1.0 means
the 100 percent chance that the input comes from real data sam-
ples, while 0.0 means the 100 percent chance that the input comes
from a generator. Weights are initialized with a normal distribution
N (0,0.01).

4.3. Training

We used the Surrey Audio-Visual Expressed Emotion (SAVEE)
dataset [HJ10] for model training. The dataset contains video clips
recorded from 4 male actors with multiple expressions, uttering 120
sentences in English. Each video clip was recorded at 60 FPS, re-
sulting in 110K images in total. We ran our 3D performance re-
construction method described in §3 on each video clip, and man-
ually removed those results with inaccurate appearance, leading to
around 12K blendshape weights vectors for each expression cate-
gory. We fixed neutral as the source domain and trained the above
CycleGAN-based expression mapping models to map neutral to

other expressions. Each model was trained for 200 epochs with
the batch size of 1. The networks were implemented in Tensor-
flow [AAB∗16] and took around 8 hours for training on a nVidia
Geforce GTX 1060 GPU. For any expression mapping that does
not involve the neutral expression, we concatenate two succes-
sive mappings using neutral as the relay node. As shown in Fig-
ure 6, an expression mapping sadness → anger is translated as
sadness→ neutral → anger. The model training is offline done
only once.

Figure 6: A mapping from sadness to anger can be translated as two
consecutive mappings: sadness→ neutral and neutral→ anger.

5. Expression Transformation

Window-based smoothing: Now we use the trained CycleGAN
model for mapping blendshape weights v to the target expression
v∗. Simply forward feeding v to the trained generator G, however,
cannot guarantee to obtain a dynamically coherent, lip-synced se-
quence. The reason is that our training data are blendshape weight
vectors from unpaired images in two domains. Therefore, smooth
transitions of an input blendshape deformation sequence from the
source domain cannot guarantee smoothness when mapped to the
target domain. Meanwhile, the unpaired sampling mechanism can-
not preserve lip sync, since the randomly sampled images do not
necessarily have the same utterance in training video clips. Figure 7
shows a failure case: the mouth in the source expression (Figure 7a)
turns to be more opened after CycleGAN mapping (Figure 7b). To
address the above issue, we propose to minimize a quadratic energy
function to solve the target expression v∗ per frame:

argmin
v∗

∥∥∥∥∥v∗−
∑

k
j=−k w jvg, j

∑
k
j=−k w j

∥∥∥∥∥
2

2

+α
∥∥B̄v∗−m

∥∥2
2

s.t. 0≤ v∗i ≤ 1, i = 1, ...,46

(6)

In Eq. 6, the first term encourages the optimal v∗ to be close to
the mapped expression vg after convolution operation by a window
of size 2k + 1. j is the index of a frame within the window con-
taining a small number of neighbors around the current frame, and
w j, and vg, j represent the weight and generated expression vec-
tor from the generator G by feeding the source expression v for
the jth frame, respectively. To balance the contribution of each vg, j
within the window, we set the weight w j to be the confidence value
D(vg, j) by feeding vg, j to the discriminator D. Recall that a higher
value of D(y) indicates it is more likely y is sampled from real data
rather than from a generator. The sliding window effectively helps
to smooth out jitters in the synthesized target animation. We set
k = 1 in this paper, hence the resulting sequence has 1 frame de-
lay from the source video stream. The second term in Eq. 6 is the
lip-correction term, detailed in the follow-up §5.1.
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(a) Source:Neutral (b) Target:Happiness (c) Corrected Lip

Figure 7: We enforce the lip motion to match the source audio
by minimizing the 3D distance of key lip vertices between before
(green dots) and after (red dots) transformation.

5.1. Lip Correction

We also synchronize lip motion with the source audio. The basic
idea is to constrain the lip region with the tracked lip motion while
maximally preserving the target expression characteristics. Specif-
ically, we integrate a lip correction term (i.e., the second term) into
the energy function Eq. 6, which measures the 3D distance of the
selected key lip vertices between the tracked and transformed face
models. In Eq. 6, B̄ is a matrix consisting of the corresponding rows
of blendshape B for the key lip vertices, and m is a vector contain-
ing the 3D positions of the key lip vertices in the source expression.
As shown in Figure 7, the key lip vertices after correction (Figure
7c) are moved toward their counterpart in Figure 7a. α is a weight
to balance the two terms, and is set to 1000 in our experiments.
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Figure 8: Weight curves of a specific blendshape basis (related
to mouth movement) directly tracked from the source video
(green, tracking), by the CycleGAN-based expression transforma-
tion alone (blue, cg), by the CycleGAN-based expression trans-
formation + lip correction (cyan, lip+cg), and by the CycleGAN-
based expression transformation + lip correction + smoothing (red,
lip+smooth).

As shown in Figure 7, the key lip vertices (or called control
points) are pre-defined as the four vertices bounding the upper and

lower lips respectively. The main reason why we only choose the
four key vertices in the middle of the lips, instead of selecting more
vertices on the lips, is as follows: for certain target expressions
(e.g., happiness), the activations of certain mouth-relevant blend-
shape bases are required. Therefore, if we impose more lip control
points as a strong constraint for Eq. 6 to ensure the transformed lip
shape being as close as possible to the original one, the resulting
target facial expression may be less desired. In our experiments,
we found that the selection of the four key vertices is a good trade-
off to balance the overall expression realism and lip-sync. Figure
8 also illustrates the weight changes of a specific blendshape ba-
sis (primarily relevant to mouth movement) by different modules.
As shown in this figure, a naive per-frame CycleGAN (cg) gener-
ates incoherent dynamics compared to the source animation. Per-
frame CycleGAN with lip correction (lip+cg) creates synchronous
but noisy movements, and finally our window-based smoothed Cy-
cleGAN with lip correction (lip+smooth) creates dynamically con-
sistent and smooth mouth movements.

5.2. Composition

To synthesize a photo-realistic frame with the target expression, we
finally re-render the face model with the target expression v∗, to-
gether with the head pose, camera parameters, lighting, and albedo
texture estimated from the source frame. The texture mapping is
pre-defined by artists. As mentioned previously, the mouth shape
may be changed after transformation, so we need to accordingly
warp the mouth interior of the source frame to fill in the mouth re-
gion of the re-rendered face. We pre-define a sparse set of vertices
around the lip contour in 3D model space, and their triangulation
in the projected 2D image space to cover the mouth region. The
mouth region of the source frame is then warped to the new pro-
jected positions of the lip contour vertices. To the end, we put the
re-rendered face, the warped mouth, and the untouched eyes re-
gion, and the background from the source frame onto different lay-
ers, and blend them together using the Laplacian pyramid blending
algorithm [BA83].

6. Experimental Results

We captured live facial performance of several volunteers using
a commodity Microsoft LifeCam HD 5000 running at 30Hz in
640×480 resolution. We also applied our method to some YouTube
video clips at resolution 1280× 720 to show the generality of our
method. We show the transformed results in Figure 9 and in the
accompanying demo video.

We implemented our system in C++ using Eigen [GJ∗10] for
linear algebra and OpenCV for image processing. We solve the
nonlinear optimization problem in face tracking using the Trust
Region strategy with box constraints for the expression parame-
ters. We use block coordinate descent algorithm for a faster con-
vergence: the pose and identity parameters usually converge in 5
iterations, and the expression parameters terminate in 10 iterations.
Although the estimation of lighting and albedo texture takes 1.8s,
it is only computed once for the first several frames and will not
delay the real-time tracking thereafter. The CycleGAN inference
is implemented in Tensorflow running on GPU. The constrained
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Figure 9: Results of our system on selected Internet video clips.
Both of the input expressions are neutral.

quadratic programming in transformation is solved by the interior
point method. Similar to [TZS∗16], we run compostion in fragment
shaders on GPU with the hardware-generated mipmaps for building
image pyramids. We show runtime statistics of our method in Ta-
ble 1. Our system runs on a desktop computer with two Intel Xeon
E5620 CPUs @2.4 GHz and nVidia Geforce GTX 1060 GPU.

Table 1: Runtime statistics for video clips with three different res-
olutions. From top to bottom: 640× 480, 1280× 720 and 1920×
1080. The CPU and GPU computations run in parallel.

CPU GPU FPS
Tracking Transform CycleGAN Composite
24.89ms 7.62ms 1.79ms 1.52ms 30.76Hz
26.29ms 7.99ms 1.76ms 2.94ms 29.17Hz
29.21ms 7.46ms 1.75ms 5.31ms 27.27Hz

We qualitatively evaluated the effectiveness of our approach on
real-time captured facial performance, on publicly available face
datasets, and on Internet video clips. Figures 1, 9, 10, and 12 show
some results by our approach to transform one expression to an-
other, with various skin colors, ethnicities, and ages. For the video
results by our approach, please refer to the supplemental demo
video.

6.1. Comparisons

Since we cannot find any previous approaches that are specifi-
cally designed to achieve the same goal as ours, to the best of
our knowledge, we compared our approach with some previous ap-
proaches that aim to achieve similar goals, including linear map-
ping, [YBS∗12], the original CycleGAN [ZPIE17], and ground
truth, described below.

Comparison with linear mapping + lip correction. We
compared our approach with the straightforward linear mapping
method. Given an input blendshape coefficients vector x from the
source expression domain, the target blendshape vector y can be
obtained from the following linear function:

y = x− X̄ + Ȳ , (7)

where X̄ and Ȳ are the average blendshape coefficients vectors for
the source and the target expressions, respectively. We computed X̄
and Ȳ from the same dataset that was used for CycleGAN training,
and kept them fixed in our experiments. If the above Eq. 7 is di-
rectly used, obviously the resulting lip movements could be out-of-
sync with audio. Therefore, we add the lip correction module that
is proposed in this paper onto the naive linear mapping method.
Figure 10b shows a result of linear mapping + lip correction.

Compared to our method (Figure 10f), the linear mapping + lip
correction could produce acceptable visual results but with less
computation/training time and less implementation effort. How-
ever, we observe that when computing the average delta blend-
shape vector (Ȳ − X̄) from a large enough dataset, asymmetric ex-
pressions may neutralize each other, resulting in balanced delta
values for those blendshape bases controlling the left half face
and the right half face. This means that if the input expression is
symmetric, the generated expression will also be symmetric. By
contrast, our model provides more flexibility by learning the non-
linear characteristic of the expression mapping problem. Figure 11
shows such an example: given a neutral input with mouth corners
slightly down, the linear mapping method generates flat or slightly
up mouth corners, which is less consistent with the relatively strong
cheek raise on the resulting face. This is because cheeks and mouth
corners are controlled by separate blendshape bases which are un-
correlated in the linear mapping method. Our CycleGAN mapping
overcomes this issue by learning the correlation between blend-
shape bases, and thus generates more holistically consistent target
expressions.

Comparison with [YBS∗12]. We compared our approach
with [YBS∗12] on the same sequence “Talking Face Video"
[Coo17] that is used in the original work of [YBS∗12]. Figure 10d
and Figure 10f present the transformation to happiness from the
same neutral input (Figure 10a) by [YBS∗12] and our approach,
respectively. Note that the method by [YBS∗12] actually replaces
the neutral sub-sequence by manually choosing a happy frame from
the input source sequence as the center of gap and interpolates ex-
pression towards the two gap boundaries. Therefore, their method
cannot transform an expression to a novel expression that does not
exist in the input source sequence. By contrast, our method can
transform the expression in the input source sequence to a novel
expression for the whole sequence, not limited to the existing ex-
pressions in the input source sequence.
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(a) Input (b) Linear Mapping + Lip
Correction

(c) CycleGAN [ZPIE17] (d) [YBS∗12] (e) Our CycleGAN-based
Expression Mapping

(f) Result by our approach

Figure 10: Comparisons among (b) the linear mapping + lip correction method, (c) the original image-based CycleGAN model [ZPIE17],
(d) [YBS∗12], and (e)(f) our method on the same input (a). (b) was generated by a linear blendshape weights mapping, (c) was generated by
the original CycleGAN model trained on the images from the same dataset and using the identical weight parameters of the loss function as
our CycleGAN-based expression mapping model, and (d) was generated by its original authors’ implementation. (e) and (f) were generated
by our CycleGAN-based expression mapping model without and with lip correction and smoothing, respectively.

Input Our ResultLinear Mapping

Figure 11: Visual comparisons between Linear Mapping + Lip Cor-
rection and our method.

Comparison with CycleGAN [ZPIE17]. We also com-
pared our method with the original image-based CycleGAN
model [ZPIE17]. In this comparison, we trained the latter using
the images from the same SAVEE dataset and the same weight pa-
rameters for the loss function. The trained network contains three
stride-2 convolutions and 9 residual blocks. From Figure 10c we
can see that the original CycleGAN model trained on a relative
small amount of images cannot generalize well to unseen images.
The generated image is not photo-realistic and the face appears
blurry, since (i) the identity of the input image is far from the ones
in the training data, and (ii) the background color is also changed
because the background color in the training data is plain black. In
addition, the image-based CycleGAN model fails to generate tem-
poral smooth facial animation, which can be clearly seen in the
supplemental demo video. In contrast, Figure 10e shows that our
CycleGAN-based expression mapping model works more effective
on a small set of training data, generalizes well to various identities,
and is more suitable for hallucinating face generation. Figure 10f
shows the lip-corrected and smoothed result.

Our ResultInput Ground Truth

Figure 12: Comparison with ground truth. Both of the input expres-
sions are neutral, and outputs are happiness and sadness from top
to bottom. The ground truth frames are manually chosen where the
subjects are uttering the same phonemes as our resulting frames.

Comparison with [TZS∗16] and [AECOKC17]. The works
of Face2face [TZS∗16] and [AECOKC17] are two state-of-art
methods for expression transfer. However, both of them require a
driving source video clip from which the expression is transfered
to a target video clip. Recording driving video clips with different
expressions and with per frame lip-sync to the audio of the target
video is practically infeasible, so a fair comparison between our
method and the two works cannot be performed. Nonetheless, it
is noteworthy that our method can be complementary to them in
order to synthesize emotional expressions with little effort in mod-
ification.

Comparison with ground truth. We captured volunteer sub-
jects speaking the same sentences with two different expressions.
After that, we applied our method to transform one expression to
the other and then compared our transformed results with their cor-
responding ground truth performance. As shown in Figure 12, our
method produced similar happiness and stronger sadness compared
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to the recorded ground truth of the subjects. It is noteworthy that it
is impossible for the subjects to make perfectly audio-aligned per-
formances with two different expressions; therefore, we manually
chose ground truth frames where the subjects are uttering the same
phonemes as the comparison frames.

7. Limitations

Despite its demonstrated effectiveness, our current work has several
limitations described below.

• Our current approach cannot handle extreme head poses in input
video. As shown in Figure 13, the target happy expression in
a side view produced a concave face contour compared to the
source image.
• Our current method lacks the capability to generate personalized

expressions. In reality, different people may have their own dif-
ferent ways to express the same emotion even when speaking the
same sentence multiple times. Moreover, people exhibit various
facial dynamic details such as creases and wrinkles around the
eyes or on the forehead. The above individual-specific expres-
sion characteristics are ignored in the current work.
• Similar to many prior related works, our currrent method relies

on an accurate facial landmark tracker. Inaccurate detected land-
marks can lead to smoothing effect at the texture estimation step
(§3) as different pixels from input images could be mapped to
the same uv position in texture space.
• Our current system can produce a consistent sequence with the

target expression. However, the transitions between different ex-
pressions are also important, which are not yet taken into con-
sideration in our current method.
• Due to the forced synchronization of lip motion in real-time, our

method cannot produce highly exaggerated expressions, such as
surprise with mouth largely deformed compared to the source.

(a) Input (b) Mesh Overlay

Figure 13: Our method cannot handle extreme head poses in input
video. (b) shows a failure case in which the face contour is changed
in the new expression (red circle).

8. Conclusion

In this paper, we present a complete pipeline to photo-realistically
transform the facial expression for monocular video in real-time.
We train a CycleGAN model in blendshape weights space using
less data and training time. We present a real-time smooth trans-
formation algorithm to retain lip sync with the source audio. We

tested our system on many face video clips with different identities
and speeches and for different target expressions.

As the future work, we plan to improve our system to automati-
cally identify the exhibited facial expression from the source video,
instead of identified by users in the current work. Our current sys-
tem generates target video with untouched audio and head motion.
However, for certain target expressions such as anger, keeping the
original audio and/or head motion from the input source video may
seriously affect the perception of the transformed emotion, because
the emotions conveyed by the facial expression, head motion, or au-
dio channels could be substantially different or even conflict with
each other. We plan to incorporate emotional transformation for
speech (e.g., [GDOP17]) and head motion (e.g., [DSD17]) to the
current framework in the future.
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